Hereditary medullary thyroid carcinoma (MTC) is caused by autosomal dominant gain-of-function mutations in the \textit{RET} proto-oncogene. Associations between specific \textit{RET} mutations (genotype) and the aggressiveness of MTC and presence or absence of other endocrine neoplasms (phenotype) are well documented. Mutations in six exons (10, 11, 13, 14, 15, and 16) located in either cysteine-rich or tyrosine kinase domains cause one of three distinctive clinical subtypes: familial MTC, multiple endocrine neoplasia (MEN) type 2A (including variants with Hirschsprung’s disease and cutaneous lichen amyloidosis), and MEN 2B. Hallmarks of MEN 2A include MTC, pheochromocytoma, and hyperparathyroidism. MEN 2B is associated with an earlier onset of MTC and pheochromocytoma, the absence of hyperparathyroidism, and the presence of striking physical stigmata (e.g., coarse facies, ganglioneuromatosis, and marfanoid habitus). Familial MTC is not associated with other endocrine neoplasms; however, the accurate distinction between familial MTC and MEN 2A may be difficult in kindreds with small size, incomplete histories, or a predominance of young individuals who may not have yet fully manifested the syndrome. Genetic testing detects greater than 95% of mutation carriers and is considered the standard of care for all first-degree relatives of patients with newly diagnosed MTC. Recommendations on the timing of prophylactic thyroidectomy and the extent of surgery are based upon a model that utilizes genotype–phenotype correlations to stratify mutations into three risk levels.

\textbf{Introduction}

Medullary thyroid carcinoma (MTC) is a rare calcitonin (CT)-producing tumor first described in 1959 by Hazard et al. (1). This neoplasm arises from the parafollicular C cells of the thyroid gland, which are derived embryologically from the neural crest. Of the 23,600 new cases of thyroid cancer expected during 2004 in the United States, MTC represents only 3% to 10% (2–4). Most patients with MTC have sporadic (nonfamilial) disease, with hereditary MTC accounting for 25% to 30% of cases. Hereditary MTC is usually bilateral and multicentric, whereas a unilateral and single focus of MTC is commonly found in sporadic cases. Multifocal C-cell hyperplasia is considered to be a precursor to invasive MTC in patients with hereditary disease (5).

Hereditary MTC is a consistent feature of multiple endocrine neoplasia (MEN) type 2. MEN 2 is a genetic syndrome caused by germline mutations in the \textit{RET} proto-oncogene, is transmitted in an autosomal dominant pattern, and affects approximately 1 in 30,000 individuals (6–8). At present, more than 500 kindreds with MEN 2 have been recognized worldwide (9). Hereditary MTC is divided into three clinical subtypes depending on the presence or absence of tissue-specific tumors, phenotypic characteristics, and the number of affected family members (Table 1). MEN 2A, or Sipple’s syndrome, is the most common subtype (approximately 80% to 90% of patients with hereditary MTC) and is characterized by MTC (100% of affected individuals), pheochromocytoma (50%), and primary hyperparathyroidism (HPT; 20%) (10). Sipple (11) first reported the association of MTC with pheochromocytoma in 1961; however, the term “multiple endocrine neoplasia type 2” was first used by Steiner et al. (12), who associated the presence of primary HPT with the syndrome (12). Hereditary MTC has full penetrance in all clinical subtypes and is usually the first manifestation of the syndrome (13,14). Patients with MEN 2A may manifest MTC as early as age 5 years and C-cell hyperplasia at an earlier age. However, when a diagnosis of MEN 2A has not yet been es-
tory of MEN 2. MEN 2-related pheochromocytomas may be
established within a family, newly diagnosed patients typically
present with a thyroid nodule or neck mass by the age of 15
to 20 years. In the era before the identification of the RET
gene as the cause of hereditary MTC clinical screening for
hereditary MTC consisted of measurements of basal and
stimulated plasma CT levels. Unfortunately, CT is not al-
tways an accurate marker of MTC because levels of this hor-
mone may also be elevated in patients with C-cell hyper-
plasia and in patients without MTC who have normal
thyroid glands (15,16).

HPT in MEN 2A may be caused by a single adenoma or
diffuse hyperplasia of all parathyroid glands. HPT may be
associated with symptoms of hypercalcemia or may be sub-
clinical in the setting of mild elevations in serum levels of
calcium and parathyroid hormone.

Two rare variants of MEN 2A have been described, one
with Hirschsprung’s disease (HSCR) and the other with cu-
taneous lichen amyloidosis (CLA) (17–19). HSCR is caused
by the absence of autonomic ganglia in the terminal hindgut,
which results in colonic dilatation, obstipation, constipation,
and obstruction in neonates. CLA is a pruritic lichenoid skin
lesion, usually located on the upper back. Each of these rare
variants has been associated only with specific RET muta-
tions in patients with MEN 2A.

MEN 2B is less common than MEN 2A, accounting for ap-
proximately 5% of MEN 2 cases. It is characterized by ag-
gressive MTC (100%); pheochromocytoma (50%); marfanoid
habitus; the presence of distinctive mucosal neuromas on the
tongue, lips, subconjunctival areas, and gastrointestinal tract are required.

FMTC, familial medullary thyroid carcinoma; HPT, hyperparathyroidism; MEN, multiple endocrine neoplasia; MTC, medullary thyroid carcinoma.

Table 1. Classification of Hereditary Medullary Thyroid Carcinoma

<table>
<thead>
<tr>
<th>Subtype</th>
<th>MTC (Penetrance)</th>
<th>Pheochromocytoma (Penetrance)</th>
<th>HPT (Penetrance)</th>
<th>No. of affected family members</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN 2Aa</td>
<td>Yes (100%)</td>
<td>Yes (50%)</td>
<td>Yes (20%)</td>
<td>Any</td>
</tr>
<tr>
<td>MEN 2Bb</td>
<td>Yes (100%)</td>
<td>Yes (50%)</td>
<td>No</td>
<td>Any</td>
</tr>
<tr>
<td>FMTC</td>
<td>Yes (100%)</td>
<td>No</td>
<td>No</td>
<td>≥4</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Yes (100%)</td>
<td>No</td>
<td>No</td>
<td>≤3</td>
</tr>
</tbody>
</table>

*Diagnosis of pheochromocytoma and/or HPT is required.

MTC-associated neurofibromas are rare. They usually appear as skin nodules and are not associated with the nerve of origin.

RET Proto-Oncogene

Biology and physiology

The RET gene is located on chromosome 10q11.2 near the
centromere and includes 21 exons. Takahashi et al. (32) first identified RET (REarranged during Transfection) in 1985 as
a proto-oncogene that can undergo activation by cytogenic
rearrangement (32). Three years later, the RET gene was
cloned by the same investigators (33). The RET gene encodes
a plasma membrane-bound tyrosine kinase enzyme, the RET
receptor, which is expressed by neuroendocrine and neural
cells, including thyroid C cells, adrenal medullary cells,
parasympathetic, sympathetic, and colonic ganglia, cells of the urogenital tract, and parathyroid cells derived from branchial arches (32-35). The RET protein consists of an N-terminal signal peptide, an extracellular region (four cadherin-like repeats, a calcium binding site, and a cysteine-rich domain), a transmembrane domain, and two intracellular tyrosine kinase domains. The extracellular cadherin-like domains are important for cell–cell signaling, whereas the cysteine-rich extracellular domain is important for receptor dimerization. The C-terminal tail of RET shows three different splicing variants that produce three protein isoforms with 9 (RET9; short isoform), 43 (RET43; middle isoform), or 51 (RET51; long isoform) distinct amino acids at their C termini (36,37). The three isoforms have physiologically different roles in the development of the kidneys, enteric ganglia, and sympathetic and sensory neuronal cells, as demonstrated by in situ hybridization studies (38). Studies in mice with just one isoform have shown that only the short isoform, RET9, is necessary for kidney morphogenesis and gut nervous system development (39,40). However, the long isoform, RET51, participates in kidney differentiation by promoting the survival and tubulogenesis of inner-medullary collecting duct cells in mice (40). In addition, RET51 is required for the metabolism and growth of mature sympathetic neurons (41). The short and long isoforms also activate different signaling pathways in neurons (42).

To date, four ligands for the RET receptor have been identified (43,44). These ligands are the glial cell line-derived neurotrophic factor (GDNF), neurturin, artemin, and persephin (45-48). The RET signal starts from a multimetric complex composed of the RET receptor and one of four different high-affinity glycosyl-phosphatidylinositol-anchored co-receptors, termed GDNF family receptor-α (GFR-α) 1 to 4 (49). It has been demonstrated that the four RET ligands GDNF, neurturin, persephin, and artemin interact preferentially with GFR-α1, GFR-α2, GFR-α3, and GFR-α4, respectively (45,50,51). Takahashi (38) and Airaksinen et al. (52) have extensively reviewed the physiologic functions of the GDNF family ligands and their receptors. Signaling requires GDNF-induced RET receptor dimerization, which results in tyrosine autophosphorylation of the receptor intracellular domain on specific tyrosine residues. The RET C-terminal end contains 16 tyrosine residues, and the long isoform, RET51, displays two extra tyrosine residues in its C terminal. Among these tyrosine residues, Y1062 is a multiddocking site that interacts with a number of transduction molecules including SHC, FRS2, DOK4/5, IRS1/2, and Enigma. The RET receptor may activate various signaling pathways, mainly through Y1062, including the RES/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase/AKT, p38/MAPK, and JNK pathways (53-66). The GDNF/RET signaling pathway has been reviewed by Ichihara et al. (67), Takahashi (38), and Airaksinen et al. (52).

Germline and somatic mutations

Germline mutations of RET causing inactivation (loss of function) are associated with congenital megacolon or HSCR, whereas germline point mutations causing RET activation (gain of function) are responsible for tumor syndromes including MEN 2 and its variants (68-79). Because RET is a proto-oncogene, a single activating mutation of one allele is sufficient to cause neoplastic transformation. The germline mutations in MEN 2 are usually located either in the extracellular cysteine-rich region (exons 10 and 11) of the RET protein, leading to RET receptor homodimerization, or in the intracellular tyrosine kinase domains (exons 13 to 16), which activate the catalytic site of the RET kinase enzyme that alters substrate specificity (80-82). The first RET germline mutations were identified in 1993 in patients with MEN 2A and FMTC (67).

Nonhereditary somatic rearrangements in RET have been identified in papillary thyroid carcinoma. The RET rearrangement in papillary thyroid carcinoma is typically created by an inversion within the chromosome with one breakpoint occurring in intron 11. This rearrangement creates a chimeric gene in which the RET promoter and extracellular domain are replaced by one of several genes. The result is that thyroid follicular cells aberrantly express the tyrosine kinase region of RET (38).

Somatic RET mutations at codons 608, 611, 618, 629, 630, 634, 639, 641, 918, or 922 are found in approximately 25% of patients with sporadic MTC, with mutations at codon 918 occurring most frequently (81-89). As with germline 918 mutations, the somatic 918 mutations are associated with aggressive MTC behavior (9,90).

Somatic RET mutations have also been reported in patients with sporadic pheochromocytoma; these include mutations at codons 630, 634, and 918 and an exon 9 splice donor site mutation (91-95).

Some activating germline RET mutations are associated with MTC only when they are present in a homozygous state, indicating that these particular RET mutations may express a low transforming activity (96). Recently, Elisei et al. (96) reported a patient with apparently sporadic MTC who was homozygous for a germline point mutation (A883T) in exon 15 of the RET gene. This index patient had histologically confirmed MTC and C-cell hyperplasia, whereas all heterozygous relatives lacked any clinical and/or biochemical signs of MTC.

Polymorphic variants and ancestral haplotypes of RET, which have a low penetrance, have been identified in a subset of patients with apparently sporadic MTC, sporadic pheochromocytomas, or isolated (nonfamilial) HSCR (97-100). For example, the rare GGTCC haplotype (SNP14, 2508C → [S8368]) is characterized by reduced penetrance and a low frequency among patients with isolated HSCR but is overrepresented in individuals with sporadic MTC (99). Furthermore, McWhinney et al. (97) found that an ancestral haplotype of RET (IVSI SNP polymorphism) is overrepresented in patients with apparently sporadic pheochromocytomas and may also have the ability to modulate the age at onset of such tumors.

Genotype-Phenotype Correlations

More than 95% of families with MEN 2 have a germline mutation in the RET proto-oncogene. The specific RET codon mutation correlates with the phenotypic expression of hereditary MTC (Fig. 1). Moreover, particular mutations correlate with the aggressiveness of MTC, and this association is more predictable within a given family (9,101). There are examples of mutations in some FMTC families with no known cases of MTC-related death, whereas the same mutations in
Germline mutations in FMTC kindreds are more equally distributed throughout the RET gene and include mutations at codons 532, 533 (exon 8), 609, 611, 618, 620 (exon 10), 630, 634 (exon 11), 768, 790, 791 (exon 13), V804M, 844 (exon 14), 891 (exon 15), and 912 (exon 16) (10,107). Mutations at codons 532, 533, 768, 844, and 912 have been identified only in families with FMTC (17,107,108). Although mutations at codon 804 were initially believed to be associated with FMTC, subsequent analysis identified patients with pheochromocytoma harboring this mutation (109–112). Presently, the V804M mutation has been associated only with FMTC, whereas pheochromocytoma has been reported in a family with the V804L mutation (110).

A single point mutation at codon 918 (intracellular domain, exon 16) is present in most patients with MEN 2B (95%). A few patients with MEN 2B may also have a mutation in colon 883 (intracellular tyrosine kinase domain, exon 15) (10,95,113–115). Several authors have previously described codon 922 in association with MEN 2B; however, these reports included patients with either somatic codon 922 mutations present only within tumor cells or a compound heterozygous genotype with germline codon 918 and 922 mutations (84,116–118). Kitamura et al. (118) found that the codon 922 mutation, which was maternally inherited (the codon 918 mutation occurred de novo in the patient), did not cause features of MEN 2B in the patient’s mother and, therefore, concluded that the codon 922 mutation is unlikely to seriously affect the function of RET and seems not to confer a deleterious effect. Additional RET mutations associated with MEN 2B include compound heterozygous mutations of V804M with Y806C and V804M with S904C (119,120). No association has been found between mutations at codons 918 or 883 and HPT (9). Pheochromocytomas are most frequently associated with mutations in codons 634 and 918, but all MEN 2-associated mutations with the possible exception of the codon 791 mutation have been associated with pheochromocytoma (9,121).

Recently it was suggested that the biologic aggressiveness of MTC is associated with the specific RET mutation (101). RET mutations have been stratified into three groups (levels 1 to 3) based on the biologic aggressiveness of MTC observed in patients with these mutations (Fig. 2, Table 2). Patients with level 1 mutations (codons 609, 768, 790, 791, 804, and 891) have a high risk for the development and growth of MTC. Initial clinical observations suggested that mutations at codons 768 and 804 may have low penetrance and, in particular, that patients with codon 804 mutations may develop MTC at an older age. However, subsequently it was found that the age at onset and the aggressiveness of MTC in association with this mutation may vary (112,122). For example, in Frohnauer and colleagues’ (122) report of affected individuals within families with a codon 804 mutation, one patient with a V804M mutation was diagnosed with MTC and distant metastases at age 6 years and ultimately died at age 12 years, whereas another patient from a separate family with a V804M mutation was found to have normal thyroid histology following prophylactic thyroidectomy at age 27 years (122). Patients with level 2 mutations (codons 611, 618, 620, and 634) have a higher risk for the early development and growth of MTC, and invasive MTC may be present as early as 5 years (9). However, there have been two reports of younger patients—a 15-month-old and a 17-
month-old—with a codon 634 mutation in whom focal MTC was found in the thyroid specimen following prophylactic thyroidectomy (29,123). Finally, patients with level 3 mutations (codons 883 and 918) have the highest risk for the early development and growth of MTC (9).

A recent review of the patients with hereditary MTC treated at our institution included 86 patients from 47 kindreds with FMTC or MEN 2; 83% of these patients underwent complete RET mutation analysis (101). The majority of the mutations were in codons 609, 611, 618, 620, and 634, with the last of these representing the most frequent mutation. Level 3 RET mutations all involved codon 918. All types of level 2 RET mutations (codons 611, 618, 620, and 634) were represented in our population. Level 1 RET mutations involved codons 609, 804, and 891. Of the kindreds with level 1 mutations, 11% had MEN 2A, 33% had FMTC, and 56% were unclassified. Of the kindreds with level 2 mutations, 68% had MEN 2A, 14% had FMTC, and 18% were unclassified. All patients with level 3

FIG. 2. Schematic diagram of the RET gene and reported codons responsible for the three levels of biologic aggressiveness of medullary thyroid carcinoma (MTC).
mutations had MEN 2B. Univariate and multivariate logistic regression analysis was used to explore the association of age at thyroidectomy and risk group (levels 1 to 3) with the aggressiveness (stage) of MTC at diagnosis. On the basis of the univariate analysis, older age at thyroidectomy was significantly associated with the likelihood of having stage III or IV MTC (American Joint Committee on Cancer staging system, 6th edition) (124) (odds ratio [OR], 1.06 per year of age at thyroidectomy; 95% confidence interval [CI], 1.02–1.10; \(p = 0.004 \)). In addition, the likelihood of having stage III or IV MTC at the time of diagnosis increased threefold for each increase in the MTC risk group from level 1 to level 3 (95% CI, 1.01–9.28; \(p < 0.001 \)). On multivariate analysis, the relationship of advanced MTC (stage III or IV) at the time of diagnosis to age at thyroidectomy and risk group became more pronounced. The risk of having stage III or IV MTC at the time of diagnosis increased 12% per year of age at thyroidectomy (95% CI, 1.07–1.17; \(p < 0.001 \)) and increased 14-fold for each incremental increase in the MTC risk group from level 1 to level 3 (95% CI, 3.05–66.55; \(p < 0.001 \)). This study confirmed that the biologic behavior of MTC can be stratified by the specific RET mutations in a MEN 2 population. Because age is an independent predictor of aggressive disease at thyroidectomy, early thyroidectomy in at-risk patients with level 2 and 3 mutations can potentially reduce the risk of MTC to that for patients with lower risk mutations. Such data support the practice of early thyroidectomy in higher risk patients.

In our series, pheochromocytomas were diagnosed in 24% of the patients, and the majority (76%) of patients with these tumors had mutations in codon 634 (101). Pheochromocytomas were bilateral at initial presentation in 52%. Of the patients who had unilateral pheochromocytoma at the time of initial diagnosis, 30% developed a contralateral pheochromocytoma at a median of 2.6 years after initial adrenalectomy.

HPT developed in 12% of our MEN 2 patients, the majority of whom (70%) had mutations in codon 634. CLA was found in 12% of our MEN 2 patients, and all affected patients had mutations in codon 634. One of our patients with a C620R mutation had manifestations of the clinical variant MEN 2A/HSCR. As expected, none of our patients with codon 918 mutations were diagnosed with HPT.

Relationship of MEN 2 and HSCR

HSCR, or colonic aganglionosis, occurs in 1 in 5000 births and is characterized by the absence of enteric ganglia affecting various lengths of the colon (125). Two clinical types of HSCR have been described: Short-segment HSCR, which involves the rectum and a small portion of the colon, accounts for approximately 80% of cases; and long-segment HSCR, which involves a larger portion of the intestine, makes up the remaining 20% of cases. Familial incidence appears to be higher for long-segment HSCR, and interestingly, trends of male predominance and a maternal parent-of-origin have been described (125–128).

HSCR can occur as isolated (nonsyndromic) cases or as part of another genetic syndrome, such as MEN 2. The underlying molecular mechanisms causing both isolated and syndromic cases of HSCR are likely multifactorial as well as multigenic (129,130). For example, at least eight susceptibility genes have been reported to be associated with HSCR, but the most common gene responsible for both isolated and syndromic cases of HSCR is RET (131). Inactivating mutations throughout the intracellular and extracellular regions of RET account for up to 50% of familial and approximately 35% of sporadic cases of HSCR (74–76).

It is perplexing how activating mutations in RET in the extracellular cysteine-rich residues of codons 609, 611, 618, and 620 allow HSCR to cosegregate in as many as 16% of kindreds with MEN 2A (18,132). One theory to explain this finding is that a single activating germline RET mutation is sufficient to cause both HSCR and MTC in these kindreds (68). However, evidence strongly suggests that the presence of RET haplotypes containing polymorphisms can cause or modify the HSCR phenotype (126,133–135). For instance, Borrego et al. (133,134) described a kindred with coexpression of MEN 2A and HSCR caused by a codon 620 mutation. The only living member of the kindred expressing both MEN 2A and HSCR carried both the codon 620 mutation and a silent c135G/A mutation in exon 2 (i.e., A45A) in a homozygous state, suggesting that this haplotype is required for expression of both MEN 2 and HSCR within this kindred. To date, several polymorphisms within the coding sequence and intronic splice sites of RET have been documented to support the theory that specific RET haplotypes are sufficient to cause or modify the HSCR phenotype (126,133,135).

Genetic Testing for Hereditary MTC

Until 1987, the only available test to detect MTC in at-risk individuals was measurement of plasma levels of CT, the primary secretory product of MTC (136,137). Abnormal plasma CT levels after stimulation with pentagastrin were used to identify patients with hereditary MTC or C-cell hy-
perplasia, thereby allowing surgery to be performed at a relatively early age (138–140). Since then, DNA-based diagnosis of MEN 2 has replaced measurement of stimulated CT levels in the identification of RET mutation carriers (16). Detection of RET mutation carriers in kindreds with hereditary MTC allows for early intervention with prophylactic thyroidec-tomy and may alter the course of MTC, reducing both disease-related morbidity and death. In addition, up to 6% of patients with apparently sporadic MTC have been found to carry germline RET mutations (17,141). This is especially likely in patients who are diagnosed with MTC at a young age or who have multifocal disease despite the absence of a family history of hereditary MTC. Correct diagnosis of these patients is essential for the identification of additional affected family members. Therefore, it has been suggested that all patients with apparently sporadic MTC be tested for RET mutations (17,141). Such RET testing is recommended by the American Society of Clinical Oncology, the National Comprehensive Cancer Network, and the International MEN99 workshop (9,142).

Techniques to detect RET mutations include DNA-polymorphism analysis (143), single-stranded conformational polymorphism analysis, restriction enzyme analysis, denaturing gradient gel electrophoresis, heteroduplex analysis, allele-specific oligonucleotide hybridization, and DNA sequencing. DNA sequencing for common mutations by amplification of selected exons (usually exons 10, 11, 13, 14, 15, and 16) known to be mutated in patients with MEN 2 (as is usually performed in most commercial laboratories) and DNA sequencing of all exons are considered the most accurate techniques because these methods can identify new, unreported mutations. Genetic counseling is essential for patients and their families who face the risk of hereditary MTC, for both educational and therapeutic reasons. Genetic counseling helps patients understand the medical facts of this disorder and how heredity influences the risk of disease in other relatives (144).

Clinical Management of MTC Based on Genotype

The optimal treatment strategy is to prevent hereditary MTC by performing early thyroidec-tomy before malignant transformation occurs. However, if MTC is already present, complete surgical resection will maximize local disease control and survival duration (145). The adequacy of the initial operation is the most important determinant of outcome (145–147). The timing of surgical intervention in patients being evaluated for prophylactic thyroidec-tomy and the extent of surgery in patients with established MTC are based on the specific RET mutation risk group. The international MEN99 workshop agreed that prophylactic thyroidec-tomy should be reserved for patients who carry a RET mutation and that the timing of thyroidec-tomy should be based on the RET mutation risk level (9). When thyroidec-tomy is performed for prevention, a total extracapsular thyroidec-tomy is indicated. Whether prophylactic central neck dissection should be performed depends on the patient’s mutation risk group, plasma CT level, and findings on preoperative ultrasonography.

Patients with level 1 mutations are often older at presentation and have more indolent tumors than do patients with level 2 or 3 mutations. For example, we previously reported a patient with a V804M (level 1) mutation who presented at age 55 years with a palpable thyroid mass. After thyroidec-tomy and central and bilateral neck dissection, the patient was found to have multifocal, bilateral MTC but no evidence of metastases in the 60 lymph nodes examined. Postoperative CT levels in this patient fell to less than 1 pg/mL. In contrast, a patient with an M918T (level 3) mutation presented at age 17 years with mucosal neuromas, which are characteristic of MEN 2B, and was found to have invasive MTC already. Pathologic analysis of the thyroidec-tomy and neck dissection specimen demonstrated multifocal MTC with bilateral metastases in 32 of 71 lymph nodes; this patient developed bone and liver metastases within 5 years. Because patients with level 1 mutations develop MTC with less aggressive metastatic potential and also have an initial delay in the neoplastic transformation of the thyroid C cells; there is no consensus on the timing of thyroidec-tomy in these patients; some experts recommend prophylactic thyroidec-tomy by age 5 years, whereas others suggest that surgery can safely be delayed until age 10 years (9). Alternatively, one may obtain periodic basal and stimulated CT levels in these patients and perform total thyroidec-tomy at the first sign of an abnormal test result (142). However, serum CT levels cannot differentiate between C-cell hyperplasia and invasive MTC (145). If thyroidec-tomy is delayed, patients with level 1 mutations may develop lymph node and distant metastases. One of our patients with an S891A mutation presented with bone metastases at age 29 years and within 6 years had developed metastases in the liver, lung, and breast. Although unusual for a carrier of a level 1 mutation, this case emphasizes the heterogeneity in biologic behavior, which may complicate the management of patients who postpone thyroidec-tomy.

Patients with level 2 and 3 mutations have a higher risk for the early development and growth of MTC. Thus, early prophylactic thyroidec-tomy in at-risk individuals with these mutations may reduce the risk of MTC to that for patients with lower risk mutations. Current guidelines for the treatment of patients with level 2 mutations include total thyroidec-tomy by the age of 5 years (9). However, invasive MTC can be found in young patients with level 2 mutations who have undergone prophylactic thyroidec-tomy. One of our patients with a C634R mutation had undergone prophylactic thyroidec-tomy at age 5 years and was found to have a 4-mm focus of MTC in the right thyroid lobe. Because of our anecdotal experience with this patient as well as the inability of serum CT levels to differentiate between C-cell hyperplasia and invasive MTC, we currently prefer to perform prophylactic thyroidec-tomy before the age of 5 years in patients with level 2 RET mutations (145). Although lymph node metastases have been reported in a 5-year-old child with a level 2 mutation, prophylactic central neck dissection for these patients is rarely performed (9,148). We do not add regional lymphadenectomy (central or lateral neck) to a prophylactic thyroidec-tomy unless findings from ultrasonography, basal CT levels, and/or patient age raise suspicion for the presence of occult lymph node metastases.

Patients with level 3 mutations have the highest risk for developing aggressive MTC, and prophylactic total thyroidec-tomy should be performed by the age of 6 months or preferably within the first month of life (9). In patients who are diagnosed later in childhood, regional lymph node metastases are usually present and require dissection of the
central (level VI) and both lateral (levels IIa, III, IV, and V) compartments.

Clinical Management of Hereditary Pheochromocytoma

Routine biochemical screening for pheochromocytoma should be performed in all patients with MEN 2. In FMTC kindreds, periodic screening for pheochromocytoma may be warranted as some FMTC families—particularly those that are small, have vague or limited histories, or have a predominance of young individuals—may manifest disease over time that suggests a phenotype more consistent with MEN 2A. We currently screen all at-risk patients yearly with measurements of either plasma or 24-hour urinary fractionated metanephrines. The risk for pheochromocytoma is reportedly high in MEN 2A patients with codon 634 mutations. Moreover, pheochromocytoma has been identified as early as 5 years in carriers with this mutation (9). Thus, biochemical screening should be considered by the age of 5 to 7 years in these patients (9).

Pheochromocytomas in patients with MEN 2 appear to be biologically distinct from sporadic tumors in that the former are rarely extra-adrenal or malignant and are diagnosed at a younger age. The absence of metastatic pheochromocytoma in patients with hereditary pheochromocytoma and the risk of morbidity and death from adrenal insufficiency in MEN 2 patients who undergo bilateral total adrenalectomy support the surgical practice of cortex-sparing adrenalectomy. Prophylactic adrenalectomy is not recommended.

In a recent report from our institution, we identified 59 patients from 40 kindreds who underwent surgical resection for hereditary pheochromocytoma or paraganglioma (149). Thirty-nine patients were diagnosed with MEN 2A, 7 with MEN 2B, 6 with von Hippel-Lindau disease, 3 with neurofibromatosis type 1, and 2 each with MEN type 1 and familial paraganglioma syndrome. Pheochromocytoma or paraganglioma was the initial manifestation of a hereditary syndrome in 9 (15%) of 59 patients, including 6 patients (15%) with MEN 2A, 1 (17%) with von Hippel-Lindau disease, and both patients with familial paraganglioma syndrome. Pheochromocytomas were present in 56 (95%) of 59 patients. At the first adrenal operation, pheochromocytomas were pathologically confirmed to be bilateral in 27 (48%) of 56 patients and unilateral in 29 (52%); malignant pheochromocytoma was not present in any patients. Detailed pedigree analysis of the 39 kindreds with MEN 2A, MEN 2B, von Hippel-Lindau disease, MEN 1, or neurofibromatosis type 1 revealed a history suggesting malignant pheochromocytoma in a single patient from a kindred with MEN 2A based upon an isolated entry in the medical record; however, histopathologic confirmation was not available.

Unilateral adrenalectomy was performed in 25 (45%) of 56 patients, and 7 (28%) developed recurrent pheochromocytoma in the contralateral adrenal gland (149). In total, 38 patients were at risk for adrenal insufficiency as a result of having undergone bilateral adrenal procedures either concurrently for synchronous disease or separately after the development of recurrent contralateral pheochromocytoma. Signs and symptoms of acute adrenal insufficiency (Addisonian crisis) occurred in 4 (11%) of 38 patients after their last adrenal operation. Three of these 4 patients had undergone bilateral total adrenalectomy. In total, 26 patients underwent cortical-sparing adrenalectomy as part of bilateral adrenalectomy; 17 (65%) were corticosteroid independent either at last follow-up or prior to completion total adrenalectomy. The risk of recurrent pheochromocytoma in the remnant adrenal gland treated with the cortical-sparing technique was 10%.

Our experience suggests that metastatic pheochromocytoma rarely occurs in patients with hereditary pheochromocytoma (0/56 patients), cortical-sparing adrenalectomy prevents the need for chronic corticosteroid replacement in the majority (65%) of patients, and the risk of recurrent pheochromocytoma in the remnant adrenal gland after cortical-sparing adrenalectomy is low (10%). We therefore have adopted the following surgical strategy for hereditary pheochromocytoma. In patients with a unilateral pheochromocytoma and a normal contralateral gland, our preferred procedure is a laparoscopic, unilateral total adrenalectomy. In patients who present with bilateral pheochromocytomas, we use a midline incision to perform a unilateral cortical-sparing procedure with removal of the entire contralateral gland. In general, we prefer to preserve the cortex on only one side rather than assume double the risk of recurrent pheochromocytoma by preserving the cortex on both sides. Finally, in patients who present with a metachronous contralateral pheochromocytoma following a previous unilateral total adrenalectomy, we prefer an open cortical-sparing procedure. Short-term follow-up in all patients includes reinforcement of preoperative patient education about adrenal insufficiency and regularly scheduled testing of adrenal reserve. Long-term follow-up includes monitoring of the remaining adrenal gland or portion of adrenal gland for recurrent pheochromocytoma with yearly plasma or urinary screening studies.

Conclusion

The biologic behavior of MTC can be stratified by the specific RET mutation in patients with hereditary MTC. DNA-based mutation analysis of the RET proto-oncogene in at-risk patients is important for the detection of gene carriers and the identification of the specific mutation. Both older age at thyroidectomy and MTC risk group are independent predictors of MTC aggressiveness. Because of the importance of early intervention in the management of MTC and of screening for pheochromocytoma, the identification of RET mutation carriers can minimize disease-related morbidity and deaths. The comprehensive care of patients with MEN 2 or FMTC should also include appropriate genetic counseling and long-term surveillance.

Acknowledgment

M.A.K. is a recipient of an Odyssey Special Fellowship from The University of Texas M. D. Anderson Cancer Center.

References

88. Marsh DJ, Learoyd DL, Andrew SD, Krishnan L, Pojer R, Richardson AL, Delbridge L, Eng C, Robinson BG 1996 Somatic mutations in the RET proto-oncogene in sporadic...
medullary thyroid carcinoma. Clin Endocrinol (Oxf) 44: 249–257.

Address reprint requests to:
Douglas B. Evans, M.D.
Department of Surgical Oncology, Unit 444
The University of Texas M. D. Anderson Cancer Center
1400 Holcombe Boulevard
P.O. Box: 301402
Houston, TX 77230-1402
E-mail: devans@mdanderson.org